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Abstract. The interaction of a sequence of two identical ultrashort laser pulses with an atomic system
results in quantum interferences as in Ramsey fringes experiments. These interferences allow achievement
of temporal coherent control of the excitation probability. We present the results of a temporal coherent
control experiment on two different atomic systems: one-photon absorption in K (4s−4p) and two-photon
absorption in Cs (6s−7d). In K, the quantum interferences between the two excitation paths associated
with the laser pulses are revealed through rapid oscillations of the excitation probability as a function of
the time delay between the two pulses. These oscillations take place at the transition frequency (period
T = 2.56 fs). The interferences are modulated by beats (at about 580 fs) resulting from the doublet
structure of the excited state (4p (2P1/2,

2P3/2)). Three complementary interpretations of this experiment
are presented: in terms of beats of quantum interferences, of variation in the spectrum intensity, and of
wave packet interferences. Whenever the two laser pulses are temporally overlapped, optical interferences
are superimposed on to the quantum interferences. The distinction between these two types of interference
is clearly revealed in the two-photon excitation scheme performed on Cs (6s−7d (2D3/2,

2D5/2)) because
quantum interferences occur at twice the frequency of the optical interferences.

PACS. 32.80.Qk Coherent control of atomic interactions with photons – 32.80.Rm Multiphoton ionization
and excitation to highly excited states (e.g., Rydberg states) – 42.50.Md Optical transient phenomena:
quantum beats, photon echo, free-induction decay, dephasings and revivals, optical nutation, and self-
induced transparency

1 Introduction

Since its recent inception, laser control of molecular and
chemical processes has been the subject of many theo-
retical and experimental efforts [1–4]. Optimal control is
based on the design of tailored laser pulses that can cre-
ate a wave packet able to reach the chosen target [3–10].
In active control, two ultrashort laser pulses are used to
take advantage of the time evolution of the wave packet.
One of the two laser pulses creates a wave packet while
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the second, slightly delayed in time, transfers this wave
packet to the desired final state whenever it reaches the
transition region [11–14]. Other schemes based on rapid
adiabatic transition have been shown to yield high popu-
lation transfer. Examples of these include Stimulated Ra-
man Scattering with Adiabatic Passage (STIRAP) [15] or
Laser Induced Continuum Structure (LICS) [16,17].

In coherent control experiments [2,18], interferences
between two quantum pathways leading to the same fi-
nal state, are used to govern the excitation probability of
the system. In the most widely used scheme, interferences
are created between a three-photon transition and a one-
photon transition induced by two coherent optical fields
[19–25]. The total cross-section of the excitation process
can be controlled with a contrast close to 100% [24].

Differential cross-sections have also been controlled.
Using interferences between two-photon and one-photon
transitions, the groups of Bucksbaum and Elliott have re-
ported control of the anisotropy of photoelectron angu-
lar distribution [26,27]. Furthermore, this technique has
been successfully implemented to control fragments in
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molecular photodissociation [28,29], photocurrents [30],
and isotopic separation [29,31].

Temporal coherent control consists of using two identi-
cal frequencies to create, in the time domain, two quantum
paths slightly delayed in time. This time delay is used to
control the phase of the interference. This technique is
similar to that developed for conducting Ramsey fringes
measurements [32–34] although the method of observa-
tion of the fringes is different. In temporal coherent con-
trol experiments, the fringes are observed in the time do-
main [35–37], while in Ramsey fringes experiments, the
fringes are observed in the frequency domain. This tech-
nique can be implemented using two identical ultrashort
laser pulses [35,38–45] and indeed has already been used
in many fields, to monitor the free evolution of an ex-
cited state wave packet. The contrast of the interference
signal reflects the overlap between the free evolving wave
packet and the initial wave packet. Such experiments have
been conducted in Rydberg state wave packets [36,46–
49], electronic spin wave packets [43], nuclear spin wave
packets [44], exciton wave packets in quantum wells [50,
51], molecular wave packets in the gas phase [35,38,39,
45], and in the liquid phase [52]. These studies have not
been restricted to the low field regime. In the high field
regime, interferences have been observed between several
multiphoton excitation paths [40]. However, the possibil-
ity of using this technique as a coherent control tool was
overlooked until recently [39,41,42,45].

Observing the quantum interferences in temporal co-
herent control requires excellent stability of the delay lines.
To keep the relative phase between the two laser pulses
constant (within a multiple of 2π), phase locking has been
used [35,38,52]. Information on the motion of the wave
packet is contained in the envelope of the interferences. It
can be directly extracted without recording the full inter-
ference pattern (interferogram) by using a phase sensitive
detection technique [47–49,53] or simply by measuring the
amplitude of the fluctuations resulting from random phase
variations [54].

While most of the features of the temporal coher-
ent control based on wave packet interferences have been
widely discussed and understood [35,55–57], the relation-
ship between quantum interferences and optical interfer-
ences has often been ignored. Similarly, the link between
the temporal interpretation and the spectral interpreta-
tion have been also overlooked.

In this paper, we present a detailed comparison be-
tween interferences induced by one-photon and two-
photon transitions in K and Cs atoms respectively. The
quantum system is an electronic spin wave packet cre-
ated in a fine structure doublet state. The linear response
of the one-photon interference in the weak field regime
provides several physical interpretations of the experi-
ment. The two-photon transition experiment provides an
unambiguous distinction between these two kinds of in-
terferences [43]. Furthermore, the extension of the inter-
pretations given for the one-photon interference to the
two-photon case is discussed.
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Fig. 1. Experimental setup: The laser beam crosses the atomic
beam at right angle. Ions are detected at 90◦ in a quadrupole
mass spectrometer. A femtosecond laser is splitted in two
pulses. The optical delay between the two pulses is made by
moving the retroreflector by 6.67 fs steps or by rotating a pair
of Brewster Plates around a vertical axis allowing a 0.3 fs res-
olution scan.

A brief description of the experimental set-up is pre-
sented in Section 2. In Section 3, the three interpretations
of the technique are presented for the one-photon transi-
tion measurement. In Section 4 the experimental results
obtained in the K (4s−4p (2P1/2,

2P3/2)) are presented.
Finally in Section 5, we present the results of the two-
photon transition measurement performed in Cs (6s−7d
(2D3/2,

2D5/2)).

2 Experimental set-up

A detailed description of the experimental set-up has al-
ready been given elsewhere [45]. The set-up combines an
atomic (potassium, caesium) supersonic beam machine
with a femtosecond laser system (see Fig. 1). A sequence
of two ultrashort laser pulses is produced in a Michelson
type interferometer. The ions, generated by the interac-
tion between the two-pulse sequence and the atoms, are
detected by a quadrupole mass spectrometer as a function
of the time delay between the two pulses.

The laser system consists of a passively mode-
locked Titanium-Sapphire oscillator. The oscillator pro-
vides Fourier transform limited ultrashort pulses of 110
fs (FWHM) and 13 nJ. The laser spectral bandwidth
(FWHM) is 8 nm or 135 cm−1. The Michelson interfer-
ometer splits each pulse in two time-delayed and phase
correlated pulses. On one arm of the interferometer a
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hollow retroreflector mounted on a translation unit pro-
vides 6.67 fs delay steps. A pair of two plates mounted at
Brewster incidence is set in the other arm of the interfer-
ometer. Counter rotation of the two plates around a verti-
cal axis provides a continuous variation of the delay with-
out walk-off of the laser beam. High temporal resolution
(better than 0.3 fs) is thus achieved, allowing the scanning
of complete interferograms. No phase locking technique as
in Scherer et al. experiments [35,38] is used to stabilise the
delay. Therefore the reproducibility is not sufficient to al-
low averaging of several scans. However, the signal to noise
ratio is large enough to record the interferogram in a sin-
gle scan. Copropagating pulses are focused with a 500 mm
focal length lens on the atomic beam. The laser irradiance
is thus of the order of 109 W/cm2.

The alkali beam consists of three separately pumped
chambers. The first chamber contains the alkali oven, the
second chamber is used for differential pumping and the
laser-atom interaction takes place in the third chamber.
Typical oven temperatures are 400 ◦C and 500 ◦C for cae-
sium and potassium respectively. The beam is seeded in
argon at a pressure of 650 mbar. The mixture is expanded
through a 150 µm nozzle. A 1 mm diameter skimmer and
a 5 mm aperture further collimate the atomic beam. The
ions resulting from the interaction with the linearly po-
larised laser beam are collected through ion optics and
fed to a quadrupole mass spectrometer.

3 Theory of temporal coherent control in
one-photon transitions

3.1 Introduction

Weak field interaction between an ultrashort laser pulse
and a quantum system can be described adequately
by perturbation theory. For one-photon transitions, this
means that the interaction varies linearly with the excit-
ing field. Thus, the response of a quantum system to a two
laser pulse sequence can be described by summing the con-
tributions of each laser pulse or by considering directly
the effect of the total laser field. Two completely differ-
ent physical interpretations result. A detailed discussion
of these interpretations is given in the following sections.

We consider a quantum system that consists of a
ground state |g〉 (used as an energy reference) and of a
set of two excited states |ek〉 (k = 1, 2) of energies ~ωk
which can be excited from the ground state through an
electric dipole allowed transition (see Fig. 2). The interac-
tion is induced by a sequence of two identical femtosecond
pulses that are truly Fourier transform limited. The spec-
tral width of these pulses (∆ωL ∼= τ−1

L ) is large enough to
populate both excited states (|ωL − ωk| ≤ ∆ωL).

The total laser field can be expressed as:

ET (t) = E1(t) +E2(t) (1)

with

E2(t) = βE1(t− τ) (2)

Fig. 2. Principle of the experiment. A ground state |g〉 is ex-
cited to a set of two excited states |ek〉 (energy ~ωk) by a two
pulse sequence. The spectral width of the two pulses is broad
enough to excite simultaneously both levels (see left hand side).

and

E1(t) = E0(t)e−iωLt (3)

where E0(t) represents the single pulse envelope, and τL
and ωL represent the pulse duration and central frequency
respectively. The values β and τ are assigned to the am-
plitude ratio and the time delay between the two pulses
respectively. In the low field regime, using the rotating
wave approximation (RWA), the excited state wave func-
tion can be written as

|ψ(t)〉 =
∑
k

∑
p=1,2

i

~
µkg

∫ t

−∞
Ep(t

′)eiωk(t′−t)dt′|ek〉 (4)

where µkg is the transition dipole moment from state |g〉
to state |ek〉.

The total amplitude of the excited state |ek〉, after in-
teraction with the two laser pulses is written as

bk(τ) = a
(1)
k + a

(2)
k (τ) = a

(1)
k (1 + eiωkτ ) (5)

where a
(p)
k is the transition probability amplitude from

the ground state |g〉 towards the excited state |ek〉 after
interaction with the single pulse p (p = 1, 2):

a
(p)
k =

i

~
µkgẼp(ωk) (6)

and Ẽp(ωk) is the Fourier transform of the p pulse electric
field. Throughout Sections 3.2 to 3.5, we assume that the
observed signal is proportional to the total population in
the excited state

n(τ) =
∑
k

nk(τ) =
∑
k

|bk(τ)|2 (7)

where nk(τ) is the population in the excited state |ek〉
after the two pulse sequence.
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3.2 Beats between quantum interferences.
Ramsey fringes

The population nk(τ) in each excited state |ek〉 contains
contributions from both laser pulses. These contributions
add coherently and quantum interferences result. The rel-
ative phase ωkτ between the two paths (Eq. (5)) results
simply from the parallel evolution of the two components
of the wave function on the ground state and on the ex-
cited state during the time delay τ . Control of the exci-
tation probability can be achieved by applying external
fields to shift the energy levels ~ωk. More conveniently
this control can be adjusted using the delay time τ . As a
result, the population in the excited state |ek〉 oscillates
thus at the angular frequency ωk. These interferences can
be used to control excitation yield and to determine the
transition angular frequency ωk (see Sect. 3.4).

This scheme presents many analogies with Ramsey
fringes experiments [32–34]. However, in such experi-
ments, special care must be taken in the phase relationship
between the two laser pulses in order to keep the central
fringe centred on the transition frequency. Ramsey fringes
are usually used to improve spectroscopic measurements
when the experimental spectral linewidth is limited by
the interaction time. The use of two interaction zones can
improve the resolution up to the reciprocal of the time
interval between the two interactions. However, this im-
provement is only significant when the laser bandwidth is
small enough compared to these two widths. When the
interaction time and thus the spectral resolution is deter-
mined by the laser pulse duration, no improvement in the
resolution can be gained by adding a second interaction
zone. This last case is usual in experiments with ultrashort
pulses. However, recording the interferogram as a function
of the time delay and measuring the oscillation frequency
provides a resolution linked to the atomic linewidth (in-
cluding all sources of inhomogenous broadening) but not
limited by the laser bandwidth. Consequently, temporal
coherent control and Ramsey fringes appear not only com-
plementary because of the scanned parameter (temporal
delay or laser frequency) but also with respect to the spec-
tral properties of the laser source.

The total population n(τ) of the excited state manifold
is the superposition of the interference pattern (interfero-
gram) associated with the various excited states |ek〉. Each
interferogram is characterised by its own frequency ωk.
All of these frequencies lie within the spectral bandwidth
∆ωL of the laser frequency ωL and as a result, the popula-
tion n(τ) presents a high frequency of oscillation close to
the laser frequency ωL. These oscillations are modulated
by low frequency beats at the various relative frequencies
ωkk′ which are of the order of (or smaller than) the laser
spectral width ∆ωL, so that the period of these beats is
longer than the pulse duration.

The derivation made in this section is acceptable be-
cause the various excitation channels are independent in
the low field regime. This is no longer the case at higher
intensities where perturbation theory is no longer valid.
Depletion of the ground state induces couplings between
the various excitation channels [58].

3.3 Frequency interpretation

The problem can be approached by considering the total
laser field created by the two pulse sequence. This is a valid
approach because the interaction is linear with respect
to the laser field. After extinction of the second pulse,
the total excited state wave function can be written as a
function of the Fourier transform of the electric field:

|ψ(t)〉 =
∑
k

i

~
µkgẼT (ωk)e−iωkt|ek〉 (8)

and the corresponding population is

n(τ) =
∑
k

(µkg
~

)2

S(ωk) (9)

where

S(ω) = |ẼT |
2 = |Ẽ1|

2|1 + βeiωτ |2 (10)

represents the intensity spectrum of the total laser field.
This spectrum has the same envelope as the spectrum of a
single pulse but is modulated due to optical interferences.
The fringe spacing is 1/τ . It should be noted that this
modulated spectrum is an intrinsic property of the two
pulse sequence. However these optical interferences cannot
be observed unless a temporal and spatial superposition of
the two pulses is induced. This is for instance the case in
a spectrometer where the dispersion induced by the grat-
ing stretches the pulses so that they overlap and interfere.
However, if a simple detector (such as a photodiode) is
used to detect the two pulse sequence, no interference is
observed (the total signal is the sum of the signals result-
ing from each pulse independently), unless the two pulses
overlap temporally. In this last case, optical interferences
result in a variation of the total intensity as a function of
the time delay. In our experiment, the atom behaves as
a spectrometer with several slits, each one placed at one
absorption frequency ωk. The first pulse excites an atomic
dipole which keeps the memory of the optical phase. The
second pulse interacts with this oscillating dipole, and
interferences result. The main difference with the spec-
trometer is that the atom induces interferences only at its
absorption frequencies whereas the interferences in the
spectrometer are present at all the frequencies contained
in the spectrum of the pulse. The resolution is limited here
by the atomic linewidth and is in general much better than
the spectrometer resolution.

Expression (9) indicates that the excitation probabil-
ity for each transition (|g〉 → |ek〉) is proportional to the
intensity spectrum at the corresponding frequency ωk. No
temporal resolution is involved here. To be valid this ex-
pression requires only that the two laser pulses are coher-
ent with respect to each other. This relative coherence is
achieved by generating the two pulse sequence from the
same laser source. It can only be affected by instabili-
ties in the delay lines. No intrinsic coherence of the initial
laser pulse is necessary as evidenced by the observation of
such quantum interferences using incoherent light sources
[59,60].
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Fig. 3. Spectrum of the two pulse sequence for different val-
ues of τ . (a) and (b): the modulation spacing is equal to the
excited state energy splitting; (c) and (d): the modulation spac-
ing is equal to twice the excited state energy splitting (a) τ =
n2π/ω1

∼= 2π/∆ω: to each excitation frequency corresponds a
maximum in the spectrum. (b) τ = (n+ 1/2)2π/ω1

∼= 2π/∆ω:
to each excitation frequency corresponds a minimum in the
spectrum. (c) τ = n2π/ω2

∼= π/∆ω. (d) τ = (n+ 1/2)2π/ω2
∼=

π/∆ω. In (c) and (d), the time delay is such that the spectrum
has a maximum for one transition and minimum for the other
transition.

The time delay dependence of the excited state popu-
lation reproduces simply the dependence of the total field
spectrum at the absorption frequencies ωk of the system.
When the time delay is scanned, the interference fringes
scroll. The same oscillations can be observed by recording
the output of a spectrometer at a fixed frequency ωk. Ide-
ally, the spectral resolution of the spectrometer should be
adjusted to the atomic linewidth. In any case, the ampli-
tude of oscillations decreases whenever the fringe spacing
is comparable to the spectral resolution of the spectrom-
eter, or to the atomic linewidth. For homogenous broad-
ening, this corresponds to an excited state coherence time
comparable to the time delay. For inhomogenous broad-
ening, the frequencies associated to various “categories”
of atoms result in a scrambling of the associated interfer-
ograms when the time delay is of the order of or greater
than the reciprocal of the spectral linewidth. This has for
instance been observed in molecules which are present in
the sample in various initial rovibrational states [45].

The effects of the delay time on the spectrum are il-
lustrated in Figure 3. This shows the spectrum of the two

pulse sequence for several values of the delay time τ . The
large envelope corresponds to the spectrum of a single
pulse. It is modulated by oscillations of 2πτ−1 period that
result from interferences between the two pulses. Clearly,
the delay time affects the spectrum. In Figure 3a and 3b,
the delay time equals the time period associated with the
excited state energy spacing ω21. This means that the
spacing between consecutive maxima is close to the fre-
quency splitting. Figure 3a shows that the interference is
simultaneously constructive at both ω1 and ω2 and as a re-
sult, the absorption probability is maximum. In contrast,
Figure 3b shows the spectrum for a time delay shifted by
half an optical period (approx. 1.3 fs in our case). The in-
terference is now destructive at ω1 and ω2 and the absorp-
tion probability is now minimum. For values of the delay
time around τ ≈ T , the spacing of the oscillations changes
only slightly, but the maxima of the spectrum scroll with
respect to the positions of the absorption frequencies. This
results in oscillations of the excitation probability with the
highest amplitude. On a longer time scale, the variation
of the spacing between maxima becomes significant. This
means that the resonance condition can be less and less
simultaneously fulfilled for all the transitions: the contrast
of the interference pattern decreases. When the delay time
equals twice the period, the modulation spacing is half
the excited state energy splitting, so that the resonance
condition can be again simultaneously fulfilled for both
levels and the contrast of the oscillations is maximum.
This happens for each multiple of the excited state os-
cillation period. For delay times that fall between these
cases of maximum contrast, the relative frequency excited
state energy splitting ω21 is not a multiple of the spacing
between the maxima in the spectrum. This is shown in
Figures 3c and 3d which have been drawn for a delay time
equal to half the oscillation period. Clearly, the spacing
between consecutive maxima is twice the value of Figures
3a and 3b. If the time delay is such that the spectrum has
a maximum for one transition, then it has a minimum for
the other transition. For transitions of identical oscillator
strengths, the overall transition probability is the same in
both cases as in any other intermediate case. Therefore,
when the delay time varies around τ ≈ T/2, no significant
variation in the excitation probability is expected.

3.4 Fourier transform spectroscopy

The total excited state population contains contributions
which oscillate at the various absorption frequencies of
the system ωk as a function of the time delay τ . There-
fore, taking the Fourier transform of the variation of this
population as a function of the time delay provides di-
rectly the product of the absorption spectrum by the laser
spectrum [42]. Indeed, the optical set-up used to generate
the two pulse sequence is exactly identical to those used
in conventional absorption Fourier transform spectroscopy
[61]. In the low intensity one-photon transition regime, it
is not necessary to use coherent laser sources. Advantages
of coherent over incoherent laser sources in multiphoton
transitions is discussed in Section 4.
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3.5 Wave packets interferences

The excited wave function (Eq. (4)) can be written as the
sum of two wave packets created by each laser pulse p:

|ψ(t)〉 =
∑
p=1,2

|ψp(t)〉 =
∑
p=1,2

(∑
k

a
(p)
k (τ)e−iωkt|ek〉

)
.

(11)

Each pulse creates a wave packet |ψp(t)〉 as a superposition
of stationary states. The wave packet |ψ1(t)〉 created by
the first pulse evolves freely between the two laser pulses,
and then interferes with the second wave packet |ψ2(t)〉.

The time evolution of |ψ1(t)〉 can be easily depicted
using the analogy with bright states and dark states. For
laser pulses short enough, we can separate the excitation
step from the time evolution of the wave packet |ψ1(t)〉.
The wave packets |ψ1(t)〉 and |ψ2(t)〉 are therefore created
in the bright state

|ψB〉 = cos θ|e1〉+ sin θ|e2〉 (12)

with tan θ = µ2g/µ1g. This bright state corresponds to
the linear combination of excited states having the high-
est coupling with the ground state via an electric dipole
transition. All linear combinations of excited states or-
thogonal to the bright state are not coupled to the ground
state by the electric field because of destructive interfer-
ences between their various components. They are there-
fore named dark states. In the case of a two level system,
the single dark state can be written as:

|ψD〉 = sin θ|e1〉 − cos θ|e2〉. (13)

Free evolution of |ψ1(t)〉 corresponds to an oscillation be-
tween the bright and the dark states under the effect of
the free Hamiltonian of the system that couples them. The
period of oscillation is again T = 2π/ω21.

The interference efficiency depends only on the over-
lap between |ψ1(τ)〉 and the second wave packet created in
the bright state, |ψ2(τ)〉 = |ψB〉. If the first wave packet is
in the dark state when the second wave packet is created,
no interference can take place. On the other hand, if the
first wave packet is in the bright state when the second
wave packet is created, then the interference takes place
with the highest contrast. Therefore, the variation of the
contrast of the interferences reflects the oscillation of the
excited state wave packet. This technique provides similar
information as pump-probe techniques on the wave packet
evolution. However, the conditions to fulfil in order to ob-
serve such wave packet motions are different. For these
both methods, several excited states must be populated
simultaneously by the first pulse in order to create a wave
packet. In the temporal coherent control method, the sec-
ond transition has the same requirements as the first one.
They are thus automatically fulfilled. The only constraint
is to keep the transitions in the low field regime [58]. In the
pump-probe method, the probe step must also satisfy the
condition that its probability depends on the wave packet
evolution.

Fig. 4. Detailed scheme of energy levels and quantum paths in
the two experiments. a) K (4s−4p (2P1/2,

2P3/2)) one-photon
excitation followed by two-photon ionisation. b) Cs (6s−7d
(2D3/2,

2D5/2)) two-photon excitation followed by one-photon
ionisation. Path Kijk correspond to absorption of one photon
of pulse i for the first transition, of pulse j for the second tran-
sition and of pulse k for the third transition.

4 Experimental results and discussion

4.1 Ion detection

The experiment was performed in the (4s−4p) transi-
tion in potassium atoms, using a 110 fs laser operat-
ing at 769 nm. The two fine structure exited states (4p
(2P1/2,

2P3/2), ω21 = 57.72 cm−1) are simultaneously ex-
cited by the two pulse sequence (Fig. 4a). The excited
state population is detected by two photon ionisation that
occurs within the two laser pulses. The amplitude ratio
between the two laser pulses is β ≈ 1.4.

For delay times larger than the pulse duration, three
quantum paths to ionisation are possible:

- K111 (or K222) when both the excitation and the
ionisation take place within the first pulse (second pulse
respectively)

- K122 when the excitation is induced by the first pulse
and the two photon ionisation performed by the second
pulse.

If the two pulses overlap, eight paths Kijk (with
i, j, k = 1, 2) are possible. First, we discuss the case of
separate laser pulses. The ion signal

SI = |K111 +K122 +K222|
2 (14)

contains contributions |Kijk|2 from each separate path
and crossed terms corresponding to interferences between
these various paths. However, the interference term asso-
ciated to paths producing ions at times separated by the
delay time τ (path K111 on the one hand, and paths K122
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and K222 on the other hand) vanishes. Indeed, the emitted
electron has a kinetic energy distribution comparable to
the laser spectral width ∆E ≈ ~∆ωL. Therefore, the cor-
responding phase shifts ∆Eτ~ between electrons emitted
by the two pulses cover completely an interval much larger
than [0; 2π] and the interference contribution vanishes af-
ter averaging over the kinetic energy distribution of the
ejected electron. This result can also be understood by
realising that destructive interferences would imply that
the electron ejected by the first pulse could be recombined
with the ion by the second pulse, even after a long delay,
which is not realistic. The total ion signal is therefore given
by

SI = |K111|
2 + |K122 +K222|

2. (15)

The term |K111|2 corresponds to the contribution from the
first pulse alone and is independent of the time delay τ .
The term |K122+K222|2 contains the interference between
the two paths leading to the excitation of the 4p state by
the first or the second pulse. This interference is displayed
on the ion signal induced by the second pulse. The be-
haviour of |K122 + K222|2 as a function of time delay is
qualitatively similar to that of the excited state popula-
tion given by equation (7) or (9). The only difference is
that in path K222, the excited state population is created
and probed simultaneously by the same laser pulse. This
reduces the probe efficiency by approximately a factor of
2 compared to path K122. This double role of the sec-
ond laser pulse reduces the contrast of the interferences
by approximately a factor of 2, but does not change its
qualitative features.

During the time overlap of the two laser pulses, optical
interferences occur before the interaction with the atoms.
The laser intensity integrated over time depends on the
phase of this interference. Thus, the excitation probability
and the ion signal reflect directly the variations in laser
intensity. For |τ | � τL, the ion signal is easily calculated
by assuming proportional amplitudes for the two pulses:

SI = |K111|
2|1 + βeiωLτ |6. (16)

This results in large amplitude oscillations between the
minimum (1−β)6 and the maximum (1+β)6 with a large
asymmetry (when β is of the order of unity) between con-
structive and destructive interferences with respect to the
“incoherent” case when the effect of the two pulses add in-
dependently, (1+β6). Moreover, these optical interferences
occur at the central laser frequency ωL, slightly different
from the frequencies ωk at which the quantum interfer-
ences oscillate. However, this difference is too small to be
measured since the number of periods of the optical inter-
ferences is of the order of ωLτL, smaller than ωL/(ωL−ωk).

4.2 Results

The experimental results of the one-photon interference
case are shown on Figure 5. A long range scan ([−2 ps;
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Fig. 5. Coherent control in potassium atoms. Excitation of
the 4s−4p transition at λ = 769 nm at low resolution (6.67 fs).
Insets show extended views at high resolution (0.3 fs) in the
optical interferences region (a), in the quantum interferences
region (b) and of the transition from optical interferences to
quantum interferences (c). The fast oscillation has in all cases
a period of ca 2.56 fs.

+16 ps]) was obtained with the low resolution device
(6.67 fs steps). The rapid oscillations (period of 2.6 fs)
are largely undersampled, but can still be detected. They
are modulated by slow oscillations of 580 fs period the re-
ciprocal of the energy spacing between the two fine struc-
ture excited states (see Sect. 3.4). These slow oscillations
result from one of the following: (i) beats between the in-
terferograms associated with the two excited states (see
Sect. 3.2), (ii) the modulated spectrum of the two pulse
sequence (see Sect. 3.3), (iii) the wave packet oscillations
between the bright state and the dark state (see Sect. 3.5).
As discussed in Section 4.1, when the laser pulses overlap,
optical interferences produce a strong peak around zero
delay. The large asymmetry between constructive and de-
structive interferences shows up clearly as predicted by
equation (16).

Figure 5 displays also three insets with fine scanning of
parts of the interferogram obtained with the high resolu-
tion device (0.3 fs resolution). Insets 5a and 5c correspond
to short and long time delays respectively. They are as-
sociated to the optical interferences (total pulse overlap)
and to the quantum interferences (no pulse overlap) re-
spectively. Inset 5b shows also the transition region when
the pulses overlap partially. In the three cases, the oscilla-
tion period is about 2.56 fs. This period corresponds to the
optical period at 769 nm as well as to the average Bohr fre-
quency of the two (4s−4p (2P1/2,

2P3/2)) transitions. The
two types of interferences cannot be distinguished. How-
ever the oscillation amplitude is symmetric in the case of
quantum interferences since these interferences arise in a
one-photon process (the 4s−4p transition) and are largely
asymmetric in the case of optical interferences which in-
volve a three photon process.
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4.3 Discussion

In the particular case of a fine structure multiplet, the
bright state and the dark state have a straightforward in-
terpretation. Since the electronic spin is not affected by
an electric dipole transition, and the two fine structure
excited states can be simultaneously excited, it is appro-
priate to use the uncoupled |l,ml, s,ms〉 basis set. The
results are independent of the initial orientation of the
electronic spin and as an example and for simplicity, we
assume that the ground state is in an eigen vector of Sz,
|ml = 0,ms = 1/2〉. In case of linear polarisation along
the Oz axis, the bright state prepared by an ultrashort ex-
citation is |m′l = 0,m′s = 1/2〉. This state is not an eigen
state of the free atom Hamiltonian. It is coupled to the
dark state |m′l = 1,m′s = −1/2〉 by the spin-orbit Hamil-
tonian. This coupling produces the oscillation between the
bright state and the dark state during the free evolution of
the system after excitation by the first pulse, at a period
which is the reciprocal of the coupling strength in the un-
coupled basis set or of the energy splitting in the coupled
basis set. This oscillation corresponds classically to the
precession of the electronic spin and of the orbital angular
momentum along the total angular momentum vector.

We have shown in Sections 3 and 4 that in one pho-
ton two pulses experiments, temporal Ramsey fringes re-
sult from quantum interferences. Due to the linearity of
the interaction, these experiments can be equivalently de-
scribed in the temporal or spectral domain. In the time do-
main, two wave packets are excited at two different times
and quantum interferences result. In the spectral domain,
the modulated spectrum of the two pulse sequence ex-
plains the observed data. Moreover, we have seen that
the non-linearity in the detection step results in large am-
plitude oscillations due to optical interferences while the
laser pulses overlap. The quantum interferences have a fre-
quency close to the mean laser frequency ωL, the natural
frequency of the optical interferences. In summary, for an
one-photon transition, the quantum and optical interfer-
ences are indistinguishable by their frequencies. However,
this aspect does not change the capacity to control the
excitation cross section.

In the next section, we present the case of temporal
coherent control in a two photon transition where optical
and quantum interferences are clearly distinguished [43].

5 Wave packet interferences in two photon
transitions

Theoretical and experimental investigations of wave
packet interferences induced by a two-pulse sequence in
a two-photon transition have already been reported [43].
In this section, we present their main features with a par-
ticular emphasis on their differences with one photon tran-
sitions. Figure 4b shows the atomic system used to illus-
trate this case. A Ti:sapphire laser operating at 768 nm
is used to excite Cs by a two-photon transition, (6s−7d
(2D3/2,

2D5/2)). Both 7d doublet states can be simultane-
ously reached because the laser bandwidth is much wider

than the 20.97 cm−1 fine structure splitting. The interfer-
ences created by the two-pulse sequence are detected with
a one-photon ionisation step induced by the same laser
pulses.

5.1 Theory

The atomic system consists of three sets of levels: ground
state |g〉, intermediate states |im〉, and excited states |ek〉
(k = 1, 2) of energies 0, ~ωm, and ~ωk respectively. Transi-
tions from the ground state to the intermediate states and
from the intermediate states to the excited states are con-
sidered electric dipole allowed. We assume resonant two-
photon transition (|g〉 → |ek〉) with all the excited states
(|2ωL − ωk| ≤ ∆ωL) and non-resonant one-photon transi-
tion. with the intermediate states (|ωm − ωL| � ∆ωL).

The two-photon transition is equivalent to a one-
photon transition with an effective dipole moment given
by the two-photon transition operator [62]

Qkg =
∑
m

〈ek|µ|im〉〈im|µ|g〉

~(ωm − ωL)
(17)

and an effective field E2
tot. Using equation (4) or (8), the

wave packet amplitude bk(τ) in the excited state |ek〉 can
be written as

bk(τ) = a
(11)
k + a

(22)
k (τ) + 2a

(12)
k (τ) (18)

with

a
(11)
k =

i

~
Qkge

−iωktẼ2
0(ωk − 2ωL)

a
(22)
k (τ) = β2a

(11)
k eiωkτ

a
(12)
k (τ) =

i

~
Qkgβe

−iωkτeiωLτ

×

∫ +∞

−∞
E0(t′)E0(t′ − τ)ei(2ωL−ωk)t′dt′ (19)

where Ẽ2
0(ω) is the Fourier transform of the square of sin-

gle pulse electric field. The amplitude a
(ij)
k (τ) corresponds

to absorption of one photon from pulse (i) and one pho-

ton from pulse (j). The crossed term a
(12)
k (τ) is significant

only when the pulses overlap (|τ | ≤ τL) because none of
the laser pulses is resonant with any intermediate state.

It is important to call attention to the difference be-
tween the Fourier transform of the square of the field and
the square of the Fourier transform of the field. Indeed,
this difference implies that the intensity spectrum of the
two pulse sequence does not play any role in understanding
the time delay dependence of the excitation probability.
The population in state |ek〉, nk(τ), as well as the total
population n(τ), include contributions from each of the

three paths |a(ij)
k (τ)|2 taken individually, and the crossed

terms corresponding to interferences between these vari-
ous paths.

All the qualitative features of the quantum interfer-
ences in a two-photon interaction can be derived from two
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simple cases: (1) total overlap of the pulses (|τ | � τL), and
(2) complete separation (|τ | � τL). A detailed discussion
of these two cases follows.

For |τ | � τL, the two pulses interfere optically be-
fore interacting with the atom. Their amplitudes are pro-
portional and their phases differ by ωLτ . The total field
reduces to

ET (t) = (1 + βeiωLτ )E0(t). (20)

The population in the excited state |ek〉 after the interac-
tion becomes

nk(τ) = |a(11)
k |2|1 + βeiωLτ |4. (21)

This population oscillates as a function of τ at the laser
frequency ωL. The ion signal, which results from absorp-
tion of a third photon from the same laser sequence, also
oscillates at the same frequency and can be expressed as

S′I = |K ′111|
2|1 + βeiωLτ |6 (22)

which is similar to the (1+2) photon case studied in Sec-
tion 4 (see Eq. (16)).

For |τ | � τL, the amplitude a
(12)
k (τ) vanishes. The

excited state population takes again a simple expression:

nk(τ) = |a(11)
k |2|1 + β2eiωkτ |2. (23)

This population oscillates at the excitation frequency as
in the one-photon transition case (see Eqs. (6) and (7)).
However, this frequency is now twice the laser frequency,
providing a direct distinction between the optical interfer-
ences and the quantum interferences.

The discussion presented in Section 4.1 is still valid for
the ion signal because it is generated from contributions
arising from pulses (1) and (2). Ionisation due to pulse
(1) produces a signal independent of the delay time. Pulse
(2) ionises the excited state population produced by the
combination of pulses (1) and (2) and the resulting signal
contains the quantum interferences described by equation
(23).

5.2 Experimental results and discussion

The experiment was performed with laser pulses of equal
intensity (β ≈ 1).The experimental results are displayed
in Figure 6. The general features are the same as those
observed in the one-photon transition case (see Fig. 5):
large amplitude oscillations in the region of pulse overlap
(|τ | ≤ τL) where optical interferences dominate; beats (of
1.59 ps) between the two excited states interference pat-
terns when the quantum interferences are present (|τ | ≥
τL). The major difference with the one-photon case shows
up clearly in the three high resolution insets. Inset 6a (for
|τ | � τL) shows the optical interferences with a period of
2.56 fs. Inset 6c (for |τ | � τL) shows the quantum inter-
ferences with a period of 1.28 fs. Inset 6b (for |τ | ∼= τL)
shows the transition between the two regimes. One part
of the laser sequence contributes to optical interferences,
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Fig. 6. Coherent control in caesium atoms. Excitation of the
6s−7d transition at λ = 768 nm at low resolution (6.67 fs).
Insets show extended views at high resolution (0.3 fs) in the
optical interferences region (a), in the quantum interferences
region (b) and of the transition from optical interferences to
quantum interferences (c). The fast oscillation has a period of
2.56 fs for optical interferences, 1.28 fs for quantum interfer-
ences.

while the other produces interfering wave packets. As the
delay time increases, the contribution of the wave packet
interferences increases and the second harmonics pattern
grows in the interferogram.

Among the interpretations given in Section 3, the
quantum interferences interpretation (viewed as wave
packet interferences or as interferences in each eigenstate)
are still valid. The spectral interpretation however is no
longer valid since the excitation amplitude is a quadratic
function of the electric field. This technique can also be
used as a Fourier transform spectroscopy (FTS) technique
[44]. For this investigation, it presents a major advantage
compared to standard FTS due to the high peak intensity
available with coherent ultrashort pulses. The technique
can also be used to access states of the same symmetry as
the ground state.

6 Conclusion

We have described a theoretical and experimental investi-
gation of temporal coherent control in atomic one-photon
and two-photon transitions. This temporal coherent con-
trol is based on interferences of two wave packets produced
by a sequence of two identical ultrashort laser pulses. The
overlap between the two wave packets governs the contrast
of the resulting oscillations and their relative quantum
phase defines the constructive or destructive behaviour of
the interferences. They are detected by ionisation of the
atom within the laser pulse sequence.

We have clearly demonstrated the relationship and
the differences between quantum interferences and optical
interferences. These optical interferences take place when
the laser pulses overlap. They produce variations of the in-
cident laser power when the interference phase is scanned.
Because of the nonlinearity of the overall process, the opti-
cal interferences result in strong asymmetric variations of
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the ion signal. On the other hand, quantum interferences
between both excitation paths take place when the laser
pulses are well separated. They result from a linear super-
position of both quantum wave packets. The correspond-
ing variations are symmetric. Another feature differenti-
ates these two kinds of interferences. Their characteristic
frequency is the transition frequency for the quantum in-
terferences and the mean laser frequency for the optical
interferences. If these two frequencies are not easily distin-
guishable in the case of one-photon transitions, they differ
by a factor of two in the case of two-photon transitions,
so that they can be clearly identified.

In the case of one-photon transitions at low laser in-
tensity, the linear relationship between the excited state
wave function and the electric field allows several comple-
mentary interpretations of the same phenomenon. Beats
of quantum interferences and wave packet interferences
have thus been described and analysed. These two inter-
pretations remain valid in two-photon transitions. In one-
photon transitions, the system response can also be inter-
preted in terms of the spectral content of the two pulse
sequence. However, this analogy can be misleading since
it implicitly implies an interaction between the two pulses
before interaction with the atom, which is not the case.
Finally, the response of the system suggests that this in-
teraction scheme can be applied to Fourier transform spec-
troscopy. The high power density available in ultrashort
pulses makes it possible to extend Fourier transform spec-
troscopy to multiphoton transitions.

This experiment is comparable to a two-slit experi-
ment where each slit is associated to one laser pulse [55,
56]. In the two-slit experiment, interferences occur because
it is impossible to determine with certainty the slit that
the particle goes through. In our experiment, interferences
occur because it is impossible to distinguish between the
two excitation paths. This indistinguishable condition is
fulfilled only after total extinction of the two laser pulses.

The scheme presented is a simple example of coherent
control of an excited state wave packet. The excited state
wave packet can be either enhanced or destroyed by the
second laser pulse. More interesting cases can be consid-
ered if two different channels can be simultaneously con-
trolled. One could for instance prepare a superposition of
two wave packets evolving each towards a different chan-
nel. Depending on the delay time between the two pulses,
each wave packet can be controlled with a different con-
trol parameter so that the branching ratio between the
two channels can be modulated.
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